Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 29(1): 33, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448800

RESUMO

Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.


Assuntos
Poluentes Ambientais , Microbiota , Neoplasias , Humanos , Receptores de Hidrocarboneto Arílico , Carcinogênese , Microambiente Tumoral
2.
Mol Cell Biochem ; 477(6): 1865-1872, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334035

RESUMO

Diabetes mellitus (DM)-induced cardiac morbidities have been the leading cause of death among diabetic patients. Recently, sodium-glucose cotransporter-2 (SGLT-2) inhibitors including empagliflozin (EMPA), which have been approved for the treatment of DM, have gained attention for their cardioprotective effect. The mechanism by which SGLT-2 inhibitors exert their cardioprotective effect remains unclear. Recent studies have suggested that EMPA exerts its cardioprotective effect by inhibiting the Na+/H+ exchanger (NHE), a group of membrane proteins that regulate intracellular pH and cell volume. Increased activity and expression of NHE isoform 1 (NHE1), the predominant isoform expressed in the heart, leads to cardiac hypertrophy. p90 ribosomal s6 kinase (p90 RSK) has been demonstrated to stimulate NHE1 activity. In our study, H9c2 cardiomyoblasts were treated with angiotensin II (ANG) to activate NHE1 and generate a hypertrophic model. We aimed to understand whether EMPA reverses the ANG-induced hypertrophic response and to elucidate the molecular pathway contributing to the cardioprotective effect of EMPA. Our study demonstrated that ANG-induced hypertrophy of H9c2 cardiomyoblasts is accompanied with increased SGLT-1 and NHE1 protein expression, an effect which is prevented in the presence of EMPA. EMPA reduces ANG-induced hypertrophy through the inhibition of SGLT-1 and NHE1 expression.


Assuntos
Angiotensina II , Miócitos Cardíacos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Compostos Benzidrílicos , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Glucosídeos/farmacologia , Humanos , Miócitos Cardíacos/metabolismo
3.
Mol Biol Rep ; 49(3): 2321-2324, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35102475

RESUMO

Numerous studies demonstrate parallels between CVD, type 2 diabetes mellitus (T2DM) and COVID-19 pathology, which accentuate pre-existing complications in patients infected with COVID-19 and potentially exacerbate the infection course. Antidiabetic drugs such as sodium-glucose transporter-2 (SGLT-2) inhibitors have garnered substantial attention recently due to their efficacy in reducing the severity of cardiorenal disease. The effect of SGLT-2 inhibitors in patients with COVID-19 remains unclear particularly since SGLT-2 inhibitors contribute to altering the RAAS cascade activity, which includes ACE-2, the major cell entry receptor for SARS-CoV2. A study, DARE-19, was carried out to unveil the effects of SGLT-2 inhibitor treatment on comorbid disease complications and concomitant COVID-19 outcomes and demonstrated no statistical significance. However, the need for further studies is essential to provide conclusive clinical findings.


Assuntos
Compostos Benzidrílicos/uso terapêutico , COVID-19/complicações , Glucosídeos/uso terapêutico , Sistema Renina-Angiotensina/efeitos dos fármacos , Insuficiência Respiratória/tratamento farmacológico , SARS-CoV-2 , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Enzima de Conversão de Angiotensina 2/fisiologia , Ensaios Clínicos Fase III como Assunto , Método Duplo-Cego , Reposicionamento de Medicamentos , Cardiopatias/prevenção & controle , Humanos , Nefropatias/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Estudos Multicêntricos como Assunto , Estresse Oxidativo/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Virais/fisiologia , Insuficiência Respiratória/etiologia , Transportador 2 de Glucose-Sódio/fisiologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
4.
Biomed Pharmacother ; 145: 112385, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34915673

RESUMO

Chemically modified mRNA represents a unique, efficient, and straightforward approach to produce a class of biopharmaceutical agents. It has been already approved as a vaccination-based method for targeting SARS-CoV-2 virus. The COVID-19 pandemic has highlighted the prospect of synthetic modified mRNA to efficiently and safely combat various diseases. Recently, various optimization advances have been adopted to overcome the limitations associated with conventional gene therapeutics leading to wide-ranging applications in different disease conditions. This review sheds light on emerging directions of chemically modified mRNAs to prevent and treat widespread chronic diseases, including metabolic disorders, cancer vaccination and immunotherapy, musculoskeletal disorders, respiratory conditions, cardiovascular diseases, and liver diseases.


Assuntos
COVID-19/prevenção & controle , Doença Crônica/prevenção & controle , Doença Crônica/terapia , Terapia Genética/métodos , Imunoterapia/métodos , Pandemias/prevenção & controle , RNA Mensageiro/química , SARS-CoV-2/imunologia , Vacinas Sintéticas , Vacinas de mRNA , Disponibilidade Biológica , Portadores de Fármacos , Previsões , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/uso terapêutico , Humanos , Imunoterapia Ativa , Sistemas de Liberação de Fármacos por Nanopartículas , Estabilidade de RNA , RNA Mensageiro/administração & dosagem , RNA Mensageiro/imunologia , RNA Mensageiro/uso terapêutico , SARS-CoV-2/genética , Desenvolvimento de Vacinas , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas de mRNA/administração & dosagem , Vacinas de mRNA/imunologia
5.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884494

RESUMO

Abnormality in glucose homeostasis due to hyperglycemia or insulin resistance is the hallmark of type 2 diabetes mellitus (T2DM). These metabolic abnormalities in T2DM lead to cellular dysfunction and the development of diabetic cardiomyopathy leading to heart failure. New antihyperglycemic agents including glucagon-like peptide-1 receptor agonists and the sodium-glucose cotransporter-2 inhibitors (SGLT2i) have been shown to attenuate endothelial dysfunction at the cellular level. In addition, they improved cardiovascular safety by exhibiting cardioprotective effects. The mechanism by which these drugs exert their cardioprotective effects is unknown, although recent studies have shown that cardiovascular homeostasis occurs through the interplay of the sodium-hydrogen exchangers (NHE), specifically NHE1 and NHE3, with SGLT2i. Another theoretical explanation for the cardioprotective effects of SGLT2i is through natriuresis by the kidney. This theory highlights the possible involvement of renal NHE transporters in the management of heart failure. This review outlines the possible mechanisms responsible for causing diabetic cardiomyopathy and discusses the interaction between NHE and SGLT2i in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...